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X-ray Diffraction Effects of Atomic Size in Alloys. II

By BeErNARD BORIE
Metallurgy Division, Oak Ridge National Laboratory,* Oak Ridge, Tennessee, U.S. 4.

(Received 23 August 1958)

A modification of the diffraction theory for a disordered substitutional solid solution containing
atoms of different sizes gives a more accurate and simpler expression for the size effect diffuse scat-
tering. A comparison of the theory with measurements of the diffuse scattering for Cu,Au near
hkl = 200 shows good agreement, even though the specimen contained some short-range order.

1. Introduction

In a recent paper by Borie (1957) (referred to here
as part I) the writer developed a theory for the dif-
fraction effects to be observed because of atomic size
from a binary substitutional solid solution. The theory
is an extension of the ideas of Huang (1947) and
Warren, Averbach & Roberts (1951). It was shown
that, in general, both the Huang diffuse scattering
and the Warren modulations of the diffuse scattering
are to be observed, and that the Bragg maxima,
though still sharp, are reduced in intensity by a factor
similar to the Debye factor for thermal motion. All
three effects were expressed in terms of a single para-
meter, C'4, which is a measure of the degree to which
the sizes of the two kinds of atoms differ from the
average atomic size as determined by the lattice
constants of the alloy.

It was necessary to evaluate the lattice sum as-
sociated with the Huang diffuse scattering by means
of an integral approximation. The resultant expression
for the total diffuse scattering was rather complicated,
and certainly very approximate. It is the object of
this paper to show that for a solid solution with no
order, the diffuse scattering may be expressed in a
much simpler and more accurate form, in terms of a
single lattice sum which may be readily evaluated
numerically.

2. Diffraction theory

It is convenient to begin this modification of the size
effect theory with equation (14) of part I which may
be written:
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* Operated for the Atomic Energy Commission by the
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The notation is that of part I: I/N is the scattered
X-ray intensity in electron units per atom; k =
27(s—s,)/A where s and s, are unit vectors in the
directions of the scattered and incident beams; and
I'mn is the vector between atomic sites m and » in
the undistorted lattice. The crystal is composed of
A and B atoms, a fraction m, of which are 4 atoms
of atomic scattering factor f,. Associated with the
size difference of the two kinds of atoms are distortion
constants C, and Cp which are related by the ex-
pression m C +mzCyg = Q.
2M' and Hpnn are both lattice sums:
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To the first term of equation (1) we add
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n = m, and we subtract it from the remaining terms.
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The first part of (4) corresponds to the sharp crystalline
reflections reduced in intensity by a factor (1—-2M").
The remaining terms give the diffuse scattering which,

with the aid of (2) and (3), may be written
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Equation (5) is a perfect square if the square of the
summation in the second term gives the two lattice
sums of the last term. With the notation
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The first summation of (6) is identical with the first
sum of the last term of equation (5). Since T'mn—Im;
= Ijn, and since for a large crystal the sum over any
two of the three indices m, n,j is equivalent to the
sum over any other two, the second sum of (6) may
be written
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The double sum is taken over any two of the three
indices m, n, j with the restriction that no two of them
may equal each other. This is clearly equivalent to
the second sum of the last term of (5). Since G*(k, %)
= G(k, —n), X G(k, n) is real and equation (5) may
be written ##m
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3. Comparison of the theory with experiment

We specialize the result of equation (7) for a close-
packed cubic crystal, and we compare the diffuse
scattering distribution thus obtained with that ex-
perimentally measured for CuzAu. The vector rms
may be written rp, = l,a;+l,a,+l;a, where a,, a,,
and ag are half the usual cubic cell vectors. For a
close-packed cubic cell, I, I,, and [, are integers whose
sum is even. With b}, b,, b; reciprocal to a;, a,, aj, k
may be written k = 2m(h;b;+%,b,+Asb;). The con-
tinuous variables Ay, &y, and %; are equal to half the
Miller indices at a reciprocal lattice point. Since the
summation of (7) over the imaginary part of G(k, )
vanishes, this equation may be written
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where a, is the cubic unit cell size.
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Fig. 1. The close-packed cubic size effect lattice sum,
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in the A;%,0 plane of reciprocal space. Contours greater
than 80 have been omitted.

The size effect lattice sum of equation (8) is readily
evaluated numerically. Its distribution in the &,A,0
plane of reciprocal space is shown in Fig. 1. There
are singularities at each reciprocal lattice point, and
in the vicinity of each point the function is negative
on the side of the point nearest the origin, and
positive on the far side. In general, the function is
large near lattice points and increases in magnitude
with distance from the origin.
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Fig. 2. Comparison of the observed (above) and computed
(below) Ip[Nf% in the vicinity of hjhyhg = 100 for Cu,Au.
Contours greater than six have been omitted.

With €4, = —0-072 A3 for disordered CuzAu (copper
atoms are called 4), as determined in Part I from the
decreased integrated intensities of the Bragg maxima,
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and with @, = 3-74 A, the diffuse scattering in the
vicinity of A;hshs = 100 (hkI = 200) in the A,4,0 plane
was computed by means of equation (8) and the size
effect function of Fig. 1. It is compared with the
experimentally measured distribution in Fig. 2. The
experimental data are those shown in Fig. 4 of Part 1.

4. Discussion

By a rearrangement of the expression for the diffuse
intensity associated with the atomic size effect, it has
been shown that Huang’s integral approximation is
unnecessary and that the diffuse scattering may be
expressed in a very simple form. In spite of the fact
that the CusAu specimen used contained a significant
degree of short-range order, agreement between ob-
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served and calculated intensity distributions in the
vicinity of the Bragg maxima is quite good. It is
interesting that the Laue monotonic diffuse scattering,
the second term of equation (4), here completes a
square, while in the case of short-range order with no
size effect, it is the leading term of a Fourier series.

Equation (8) has been arranged so that the size
effect function of Fig. 1 is quite general and may be
used to compute the diffuse scattering for any close-
packed cubic solid solution.
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A Note on the Magnetic Intensities of Powder Neutron Diffraction
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General intensity formulae of powder neutron diffraction lines are given for magnetic structures
with a single-spin-axis as a function of the spin direction with respect to the crystallographic axes.
If we disregard the vector properties of spins and assign a positive or negative scattering amplitude
to the magnetic atoms, these scalar scatterers constitute a ‘configurational symmetry’ of the magnetic
structure. When this symmetry is tetragonal, rhombohedral or hexagonal, the powder intensities
cannot provide more information than the angle between the spin direction and the unique axis of
the structure. The ambiguity of spin directions in « Fe,0;, NiAs and MnO type structures is dis-

cussed.

1. Introduction

Neutron intensities of magnetic origin at a Bragg
reflection can be obtained by straightforward calcula-
tions based upon the fundamental formula of Halpern
& Johnson (1939). If suitable single domain crystals
are available for neutron diffraction studies of mag-
netic compounds, the interpretation of the magnetic
intensities gives a unique solution for the spin arrange-
ments. However, if one must depend upon the powder
data alone, some ambiguities arise because of the super-
position of several non-identical reflections with the
same Bragg angle 0.

It has been known that the spin direction cannot
be deduced from the powder data of cubic ferro-
magnetics, such as Fe, because any spin direction
with respect to the crystallographic axis gives the
same magnetic intensities if the domains are oriented
randomly. The ambiguity of spin structures in cubic
antiferromagnetics of the MnO-type has been dis-
cussed in detail by Li (1955) and by Keffer & O’Sulli-
van (1957) considering the possibility of multi-spin-
axis orientations.

Fig. 1. Examples of antiferromagnetic spin arrangements,
(@) MnO type, (b) NiAs type, (¢) Rutile type, (d) Fe,Og
type—after Shull & Wollan (1956).



