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X - r a y  Diffract ion Effects of A t o m i c  Size in Al loys .  II 

BY BERNARD :BoRIE 
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(Received 23 August 1958) 

A modification of the diffraction theory for a disordered substitutional solid solution containing 
atoms of different sizes gives a more accurate and simpler expression for the size effect diffuse scat- 
tering. A comparison of the theory with measurements of the diffuse scattering for Cu3Au near 
hIcl = 200 shows good agreement, even though the specimen contained some short-range order. 

1. I n t r o d u c t i o n  

In  a recent paper  by  Boric (1957) (referred to here 
as par t  I) the writer developed a theory for the dif- 
fraction effects to be observed because of atomic size 
from a b inary  subst i tut ional  solid solution. The theory 
is an extension of the  ideas of Huang  (1947) and  
Warren,  Averbach  & Roberts  (1951). I t  was shown 
that ,  in general, both the Huang  diffuse scattering 
and  the Warren  modulat ions of the diffuse scattering 
are to be observed, and tha t  the Bragg maxima,  
though still sharp, are reduced in in tens i ty  by  a factor 
similar  to the Debye factor for thermal  motion. All 
three effects were expressed in terms of a single para- 
meter,  Ca, which is a measure of the degree to which 
the sizes of the two kinds of atoms differ from the 
average atomic size as determined by  the latt ice 
constants of the alloy. 

I t  was necessary to evaluate  the lat t ice sum as- 
sociated with the Huang  diffuse scattering by means  
of an integral  approximation.  The resul tant  expression 
for the total  diffuse scattering was ra ther  complicated, 
and certainly very  approximate.  I t  is the object of 
this  paper  to show tha t  for a solid solution with no 
order, the diffuse scattering m a y  be expressed in a 
much  simpler and more accurate form, in terms of a 
single latt ice sum which m a y  be readi ly evaluated 
numerical ly .  

2.  D i f f r a c t i o n  t h e o r y  

I t  is convenient to begin this modificat ion of the size 
effect theory  with equation (14) of par t  I which m a y  
be wri t ten:  

I / N  = (mafa+mBfB)2(1--2M') ~ exp [ik.  r ~ ]  
m 2 2 n .m 

+ ( ~ f i + m ~ f i )  
ik .  rmn 

+2mACz(mafa+mBfz)(fa--fB)~.mZ, ]rmn]3 

×exp  [ik.rmn]+ (mafa+mBfB) ~ ~ Hmn 
n~:m 

x exp [ik.  rm~]. (1) 

* Operated for the Atomic Energy Commission b y  the  
Union Carbide Corporation. 

The notat ion is tha t  of par t  I :  I / N  is the scat tered 
X-ray  in tens i ty  in electron units  per  a tom;  k - -  
2 ~ ( s - s 0 ) / 2  where s and s o are uni t  vectors in the  
directions of the scattered and incident  beams;  and  
rmn is the vector between atomic sites m and n in  
the undistor ted lattice. The crystal  is composed of 
A and B atoms, a fraction m a of which are A atoms 
of atomic scattering factor fA. Associated with the  
size difference of the two kinds of atoms are distort ion 
constants CA and CB which are related by the ex- 
pression mACA+mBC B : O. 

2M'  and Hmn are both latt ice sums:  

2M'  = m__~ C~ Z (k. rm_____j)~ (2) 
mE ~,m Irm:l 6 

gmn m A C2 a ~ k .  rml k . rn l  
: m---BB ~.m,n Iraqi a Irn:[ 3 " (3) 

To the first term of equation (1) we add 
(mafa+mBfB)~(1--2M ') to complete the sum for 
n = m, and we subtract  i t  from the remaining terms. 

1/N = (mafa+mBfn)~(1-2M ') ~ exp [ ik.rmn] 
n 

+ m a m B ( f a - f , )  ~" 
ik .  rmn 

+ 2m~ C~ (m~A +mBfB)(A-A)  2, 
~,m lrmnl a 

x exp [ik. r~n] + (mAfa +mBfB) 2 

× {2M'+  2 Hm~ exp [ ik . rm~]}.  (4) 
n~:ra 

The first par t  of (4) corresponds to the sharp crystall ine 
reflections reduced in in tens i ty  by a factor ( 1 - 2 M ' ) .  
The remaining terms give the diffuse scattering which, 
with the aid of (2) and (3), m a y  be ~witten 

ID 
mamB N (fa--fB)2+2(fa--fB)(m~fa+mBf a) CA 

Tn B 
ik .  rmn 

×n*m ~ [rmnl3 exp [ i k . r ~ ]  

CA { ( k  rm:) 2 
+ (mAfa +mBfB) 2 m--~ /~Y.~ ]r~:16 

k .  rm: k . rn: ] 
+ ~Y Z - - - -  exp [ ik.rmn] 

. . m  :*m,.  Ir,,,:[3 ~r.~-( 5 ( 
(5) 
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:Equation (5) is a perfect  square if the  square of the  
summat ion  in the  second te rm gives the  two lat t ice 
sums of the  last  term.  Wi th  the  nota t ion 

i k .  rmn 
G(k, n) - ] r ~ l ~  exp [ik .rmn] 

we m a y  write 

i k .  rmn 
I Z O ( k , n ) l  ~ = Z - -  
n # m  n # m  l r m n [  3 

- i k .  rml 
x exp [ ik . rmn] ~ lrm~a exp [ - i k . r m l ]  

= ~ (k. r ~ )  ~ k .  r ~  k .  rm~ 

n # m  ]#rn, n 

x exp [ik.  (rmn-rm~)] . (6)  

The first summat ion  of (6)  is identical with the  first  
sum of the  last  t e rm of equat ion (5). Since r m . - r m ~  
= r~n, and since for a large crystal  the sum over any  
two of the three indices m, n, j is equivalent  to the  
sum over any  other  two, the  second sum of (6) m a y  
be wri t ten  

2 X  k .  r ~  k .  rm~ 
irmnla ir~¢la exp [ik.rCn] . 

The double sum is t aken  over any  two of the  three  
indices m, n, j with the restr ict ion t ha t  no two of them 
m a y  equal each other. This is clearly equivalent  to 
the  second sum of the last  t e rm of (5). Since G*(k,  n) 
= G(k, - n ) ,  ~ G(k, n) is real and  equat ion (5) m a y  
be wri t ten  "4~ 

I~ {(L-f~)+(md~+uBf~) C_~ ~ a(k,n)}~. 
m A  m B - N  m B  nW-ra 

(7) 

3. C o m p a r i s o n  of the  t h e o r y  w i t h  e x p e r i m e n t  

We specialize the result  of equat ion (7) for a close- 
packed cubic crystal ,  and we compare the diffuse 
scat ter ing distr ibution thus obtained with t h a t  ex- 
per imenta l ly  measured for CuaAu. The vector  rmn 

¢ t t ! t m a y  be wri t ten  rm~ = lla~+l~a2+laaa where al,  a2, 
/ 

and  aa are half  the  usual cubic cell vectors. :For a 
close-packed cubic cell, l~, 4, and 1 a are integers whose 

! / i / I / 
sum is even. Wi th  b~, b~, ba reciprocal to a~, a2, aa, k 

! t t m a y  be wri t ten k -  2~(h~b~+h~b2+haba). The con- 
t inuous variables 4 ,  he, and ha are equal to half the 
Miller indices a t  a reciprocal latt ice point. Since the 
summat ion  of (7) over the imaginary  pa r t  of G(k, n) 
vanishes, this equat ion m a y  be wri t ten  

I~  8CA 
m a m e N  { ( f . ~ - f ~ ) - ( m f f ~ + m ~ f ~ )  mBa~ 

2~  (l~ h~ + 4 h~ + 1 ah~) 
x Z sin 27~(/a hi + 1,.h,. + laha)} ~ (8) z ~ z ~  ( l~  2 2 ~/*" + 12 + la) 

where a 0 is the  cubic uni t  cell size. 
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Fig. 1. The close-packed cubic size effect lattice sum, 

2~ (l 1 h I + l 2 h~ + 1 a h a) 
Z 2 2 2 a/2 sin 2~(llhz+12h~.+laha) lzl21~ (ll+12+l~) 

in the hlh20 plane of reciprocal space. Contours greater 
than 80 have been omitted. 

The size effect lat t ice sum of equat ion (8) is readily 
evaluated numerically.  I t s  dis tr ibut ion in the  hlh20 
plane of reciprocal space is shown in Fig. 1. There 
are singularities a t  each reciprocal lat t ice point, and 
in the  vicinity of each point  the funct ion is negat ive 
on the  side of the point  nearest  the  origin, and 
positive on the  far  side. In  general, the  function is 
large near  latt ice points and increases in magni tude  
with distance from the origin. 

h2=0.25 

° i hllOq5 ""--~' h,=1"25 
I 

! 
/ 

/ 
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1 

h 2 = 0 . 2 5  

Fig. 2. Comparison of the observed (above) and computed 
(below) Ii)[Nf~ in the vicinity of hlhah a = 100 for CuaAu. 
Contours greater than six have been omitted. 

Wi th  C~ = -0 .072 /~8  for disordered Cu3Au (copper 
a toms are called A), as determined in P a r t  I f rom the  
decreased in tegra ted  intensities of the  Bragg maxima,  
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and with a 0 = 3.74 J~, the diffuse scattering in the 
vicinity of hlhgh a = 100 (hkl = 200) in the h~h20 plane 
was computed by means of equation (8) and the size 
effect function of Fig. 1. I t  is compared with the 
experimentally measured distribution in Fig. 2. The 
experimental data are those shown in Fig. 4 of Part I. 

4. D i s c u s s i o n  

:By a rearrangement of the expression for the diffuse 
intensity associated with the atomic size effect, it has 
been shown that  Huang's integral approximation is 
unnecessary and that  the diffuse scattering may be 
expressed in a very simple form. In spite of the fact 
that  the CuaAu specimen used contained a significant 
degree of short-range order, agreement between ob- 

served and calculated intensity distributions in the 
vicinity of the Bragg maxima is quite good. I t  is 
interesting that  the Laue monotonic diffuse scattering, 
the second term of equation (4), here completes a 
square, while in the case of short-range order with no 
size effect, it is the leading term of a Fourier series. 

Equation (8) has been arranged so that  the size 
effect function of Fig. 1 is quite general and may be 
used to compute the diffuse scattering for any close- 
packed cubic solid solution. 
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General intensity formulae of powder neutron diffraction lines are given for magnetic structures 
with a single-spin-axis as a func$ion of the spin direction with respect to the crystallographic axes. 
If we disregard the vector properties of spins and assign a positive or negative scattering amplitude 
to the magnetic atoms, these scalar scatterers constitute a 'configurational symmetry' of the magnetic 
structure. When this symmetry is tetragonal, rhombohedral or hexagonal, the powder intensities 
cannot provide more information than the angle between the spin direction and the unique axis of 
the structure. The ambiguity of spin directions in c¢ Fe20 a, NiAs and MnO type structures is dis- 
cussed. 

1. In troduc t ion  

Neutron intensities of magnetic origin at a Bragg 
reflection can be obtained by straightforward calcula- 
tions based upon the fundamental formula of Halpern 
& Johnson (1939). If suitable single domain crystals 
are available for neutron diffraction studies of mag- 
netic compounds, the interpretation of the magnetic 
intensities gives a unique solution for the spin arrange- 
ments. However, if one must depend upon the powder 
data alone, some ambiguities arise because of the super- 
position of several iron-identical reflections with the 
same Bragg angle 0. 

I t  has been known that  the spin direction cannot 
be deduced from the powder data of cubic ferro- 
magnetics, such as Fe, because any spin direction 
with respect to the crystallographic axis gives the 
same magnetic intensities if the domains are oriented 
randomly. The ambiguity of spin structures in cubic 
antiferromagnetics of the MnO-type has been dis- 
cussed in detail by Li (1955) and by Keffer & O'Sulli- 
van (1957) considering the possibility of multi-spin- 
axis orientations. 

(a) (b) 

,•• "':~, ..... 

b , " ~  
(c) (d) 

Fig. 1. Examples of antiferromagnetie spin arrangements, 
(a) 1VInO type, (b) NiAs type, (c) Rutile type, (d) F%O a 
type--after Shull & Wollan (1956). 


